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SUMMARY

Spatial operators used in unstructured finite volume flow solvers are analysed for accuracy using Taylor
series expansion and Fourier analysis. While approaching second-order accuracy on very regular grids,
operators in common use are shown to have errors resulting in accuracy of only first-, zeroth- or even
negative-order on three-dimensional tetrahedral meshes. A technique using least-squares optimization is
developed to design improved operators on arbitrary meshes. This is applied to the fourth-order edge
sum smoothing operator. The improved numerical dissipation leads to a much more accurate prediction
of the Strouhal number for two-dimensional flow around a cylinder and a reduction of a factor of three
in the loss coefficient for inviscid flow over a three-dimensional hump. Copyright © 2001 John Wiley &
Sons, Ltd.

KEY WORDS: accuracy; edge weights; least squares; smoothing operators; tetrahedron; unstructured
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1. INTRODUCTION

Unstructured mesh flow solvers using the finite volume methodology are widely applied due to
their versatility for problems with complicated geometries; see, for example, Mavriplis [1],
Dawes [2], Watterson [3] and de Foy and Dawes [4]. In spite of their frequent use, the accuracy
of spatial operators such as the gradient or Laplacian operators used in finite volume solvers
has not been fully analysed. It is often assumed that the order of accuracy is the same on a
regular unstructured grid as for the corresponding operator on structured meshes, and that this
accuracy does not degrade significantly with increasing mesh irregularity. This paper extends
current mesh analysis techniques to unstructured meshes so as to verify the above assumptions
in the context of the flow solver of de Foy and Dawes [submitted]. A method for determining
improved operators is then devised leading to examples of much more accurate flow solutions.
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Mesh accuracy analysis for tetrahedral meshes has focussed on geometric quality mea-
sures for individual cells. Parthasarathy [4] reviews several of these methods and assesses
their ability to detect degenerate cells. They are based on simple ratios of edge lengths, face
areas, cell volumes and radii of the circumsphere and inscribed sphere, making them com-
putationally inexpensive to evaluate. These measures can be very effective for both assessing
and optimizing meshes.

Accuracy analysis of the actual operator used is relatively less developed. It has, however,
attracted considerable attention for finite element methods, with extensive evaluation of
interpolation errors for different approximation functions. This provides an estimate of the
error involved in the use of an operator given an actual flow solution. Ilinca et al. [5] make
use of this analysis in two dimensions to redistribute the nodes in a mesh in order to
improve mesh resolution without increasing the size of the mesh. Barth and Fredrickson [6]
define flow variables as averages over different control volumes around cell vertices and
develop higher-order approximations of the flux terms in order to improve accuracy. Later
development by Barth [7] makes use of added variable storage at edge centres to support a
more accurate reconstruction of the convective flux terms. Comparative analysis by
Aftosmis et al. [8] of reconstruction techniques on quadrilateral and triangular meshes
shows that they have equivalent accuracies despite the extra computational cost of the
triangular meshes. The latter, however, perform better when very distorted meshes are used.

For finite volume methods, there have been few attempts at quantifying errors. Roe [9]
analyses the accuracy of the gradient operator for triangular meshes in two dimensions and
finds it to be second-order accurate for a perfectly regular mesh but usually only first-order
accurate on normal meshes. For a mesh where the smoothing operator is at least second-
order accurate, Giles [10] shows that global second-order accuracy can be preserved in spite
of locally first-order accurate operators, as the truncation errors associated with the flux
sums through a face cancel each other out from node to node. Baker [11] analyses the
effect on the flow solution of a non-centrally symmetric column of triangular cells based on
a rectangular grid of points in two dimensions. The errors of the spatial operators are
calculated in a manner similar to Roe and these are then combined with the errors due to
the time discretization of the solver. The error introduced is shown analytically to disappear
within a few cells for the model convection equation and also for an incompressible
boundary layer.

More accurate operators are currently obtained either by higher-order reconstruction for
finite volume solvers or by using higher-order elements in finite element solvers. Finite
difference schemes are used on Cartesian grids in the field of computational aeroacoustics.
For these, high-order accuracy is required in order to propagate accurately as many wave
components as possible. This is typically done by using either larger stencils or compact
schemes, with up to tenth-order accurate operators. Optimizing for the Fourier behaviour
of the operators has been found to be preferable to maximizing the order of accuracy of a
solver. This has been implemented by Lele [12] and by Tam and Webb [13]. By reducing
the order of accuracy of the operator without reducing the support stencil, extra degrees of
freedom are obtained, which are then used for improving the Fourier behaviour of the
solvers. Lele does this by specifying the behaviour at certain fixed wave numbers, relying
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on a judicious choice of these to guarantee proper behaviour in the range between them.
Tam and Webb integrate the error in the effective velocity analytically and minimize it over
a predetermined range of wave numbers. Both of these methods deal with centred operators
so that there is no artificial dissipation errors to be considered. Two-dimensional results are
presented by using the one-dimensional operators in the different Cartesian directions.
Lockard et al. [14] make use of the method of Tam and Webb to obtain improved
operators for an essentially non-oscillatory (ENO) scheme, where the stencil and hence the
operator depend on the local flow solution. A later development is included to obtain
non-centred schemes, thus removing the need for artificial dissipation or filtering. This
requires a weighting function to balance the dispersion errors with the dissipation errors.
Kim and Lee [15] extend the analytical method of Tam and Webb to the compact schemes
considered by Lele. Further comparison of the two different approaches is presented in
Tang and Baeder [16], who develop a method to obtain compact schemes with improved
higher frequency solutions.

The smoothing operator is a crucial element of any explicit centred flow solver. Mavriplis
[1] adapted the blended second- and fourth-order smoothing of Jameson to unstructured
meshes. The second-order term is obtained from an edge sum approximation to the Lapla-
cian. This procedure is then repeated to obtain fourth-order smoothing. Lindquist and Giles
[17] compare the order of accuracy of both quadrilateral mesh and triangular mesh flow
solvers using the smoothing operator of Mavriplis and a higher-order accurate smoothing
operator based on the repeated action of a true Laplacian operator. The higher-order
accurate smoothing is found to preserve second-order accuracy, whereas the edge sum
smoothing decreases the order of accuracy to 1.5. This, however, comes at the cost of
reduced stability for highly stretched meshes. Holmes and Connell [18] seek to improve the
edge sum smoothing operator by looking for an approximation to the edge sum procedure
that would preserve linear transparency. This is achieved by using Lagrangian multipliers to
find edge weights that represent the smallest modification to an edge sum multiplication. In
order to preserve sufficient smoothing properties on distorted or stretched meshes, the edge
weights are truncated to between 0 and 2, thereby reducing some of the improvements in
accuracy. Nevertheless, the method is found to be more robust than the true Laplacian
smoothing of Lindquist and Giles [17]. This highlights the trade-off between robustness and
accuracy that is often present in the design of smoothing operators, with actors often
playing a ‘zero sum game’.

These analyses do not, however, extend to the sort of irregularity that is usually present
in unstructured meshes. This paper will describe a unified method of formulating operators
on any type of mesh using edge sums and then extend Taylor series analysis and Fourier
analysis to this framework. The methods will be used to analyse the accuracy of the
convection, diffusion and smoothing operators on different types of mesh points. These
results do not consider the errors due to the temporal discretization, although they could be
used towards a global estimate of accuracy by including them in the analysis of Baker [11].

Having expressed spatial operators as edge sums, a method is presented for designing
operators with specific properties on arbitrary meshes. This is applied to the fourth-order
smoothing operator of a finite volume flow solver leading to improved accuracy of the
solutions.
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2. SPATIAL OPERATORS ON UNSTRUCTURED MESHES

The present work is developed within the context of the unstructured, unsteady, incompressible
flow solver of de Foy and Dawes [submitted]. This solves the incompressible Navier–Stokes
equations with the pressure-correction method of Hirt and Cook [19]. An explicit prediction
step (1) is followed by a correction step (2) and (3) based on the pressure Poisson equation (4)
and the corresponding velocity correction (5).

u*=un−�t(� · (u�u)n+�pn−1−��2un) (1)

pn=pn−1+p � (2)

un+1=u*+u� (3)

� · �p �=
� · u*
�t

(4)

u�= −�t�p � (5)

where n is the current time level, the prime � is the correction level and � is the dynamic
viscosity.

Cell-vertex storage is used. The variables are nodal values assumed to be piecewise linear
within the cells. The gradient operator used to calculate convection fluxes for a variable �

defined at all nodes is implemented as a Green–Gauss integration for the control volume
comprising all the tetrahedra around a node as shown by Equation (6). V is the volume of all
cells around a node and S is the surface area of the same

�
V

�� dV=
�

S

� dS (6)

The Laplacian operator, used for the viscous forces, is obtained in two steps. First derivatives
are obtained by applying Green–Gauss integration for individual tetrahedra. These values are
then used in a Green–Gauss integration over the median dual (M, surface area SM) around a
node as described by Equation (7)

�
M

�2� dV=
�

SM

�� · dS (7)

Because the discretization of the flow solver is centred in space and forward in time, explicit
artificial dissipation is added at each time step. The method of Mavriplis [1] is used, applying
a blend of second- and fourth-order smoothing. A second difference is constructed as an
approximation to the Laplacian using the edge sum procedure described by Equation (8). For
a variable � defined at all nodes, the second difference is the sum of the difference over all
edges connecting a central node k to its first neighbours n
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d2�k=�
n

(�k−�n) (8)

The process is then repeated on the second differences in order to obtain an approximation to
a fourth difference

d4�k=�
n

(d2�k−d2�n) (9)

On a Cartesian grid, the above equations yield a second and fourth difference operator. For
unstructured meshes, however, they are a coarse approximation of these operators and are
retained mainly because of the ease of their implementation and their effectiveness at
eliminating flow instabilities. Artificial dissipation is added to the velocity field on the
right-hand side of the prediction step (1) ensuring that continuity is preserved, and to the
pressure field when it is updated with the pressure correction (2).

3. ACCURACY ANALYSIS

3.1. Edge weights

In order to facilitate the accuracy analysis and enable further developments of different types
of operators, we seek to represent these as edge sums as described by Equation (10). An
operator A acting on a nodal variable field � returning a value at node k can be represented
as a sum of the value at each neighbour n of node k multiplied by a coefficient Cn. Ck is the
coefficient of the impact of the value of �k on (A�)k and equals −�n Cn

(A�)k=Ck�k+�
n

Cn�n (10)

Application of any type of operator, whether it be the simple edge sum smoothing operator
described above (in which case Cn=1 for all n) or the finite volume gradient or Laplacian
operators, then reduces to a matrix multiplication with different sets of coefficients and
different sets of edges. For the fourth-order smoothing operator, the set of neighbours will
include all of the second neighbours of a node, not just the set of neighbours sharing a cell
edge with the central node.

This is equivalent to rephrasing any type of scheme into a finite difference formulation.
Different operators can then be accommodated in any number of dimensions by appropriately
constructing the list of edges and determining the value of the edge weights corresponding to
the desired operator.

3.2. Taylor analysis

Having obtained the edge sum equivalent of an operator, the Taylor series equivalent can be
determined by substituting a Taylor expansion of the variable field around node k. This is
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shown to second-order in Equation (11) for a variable � at neighbouring nodes n, where �rkn

is the vector length from k to n and Hk is the Hessian matrix

�n=�k+�rkn
T ��k+

1
2

�rkn
T Hk�rkn (11)

Substituting Equation (11) into Equation (10) leads to an equation for each term in the
Taylor series expansion in terms of the edge weights as shown in Equation (12). The indices
i, j, k correspond to the derivatives in the x-, y-, z-directions and the terms �xn, �yn, �zn are
the Cartesian components of the edge length �rkn

ai, j,k=�
n

Cn�xn
i �yn

i �zn
k, i, j, k=0, 1, 2 (12)

By evaluating the terms of the Taylor series expansion, the order of accuracy of any operator
can be easily determined. The actual behaviour of the operator is, however, difficult to
interpret from the magnitude of the terms in the series.

3.3. Fourier analysis

The Fourier behaviour of the operator can be obtained by substituting a Fourier expansion for
variable � around node k in Equation (10). This has been used by Lele [12] and by Tam and
Webb [13] in the field of computational aeroacoustics to develop operators with improved
wave transport properties.

In one dimension a flow solution can be written as a Fourier series (13), with wave numbers
kl given by Equation (14), where �s corresponds to the mesh spacing and N is the number of
terms in the series for a regular one-dimensional stencil with 2N+1 nodes

�(s)= �
N

l=0

�� l eikl s (13)

0�kl�
�

�s
(14)

Substituting this into the edge weight formulation of an operator leads to the following
equation:

(A�)k=Ck �
N

l=0

�� l+�
n

Cn �
N

l=0

�� l eikl sn (15)

The summation terms over the edges can be performed numerically, leaving an expression for
the behaviour of the operator in terms of the wave number
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(A�)k= �
N

l=0

k*�� l eikl s (16)

k* is referred to as the modified wave number and is a function of the wave number,
describing the effect of the operator on each term in the Fourier series. It contains a real part
describing the diffusion of the Fourier term and an imaginary part describing the convection.

In order to analyse the behaviour of the operator, it is necessary to compare the modified
wave number with the wave number corresponding to the ideal operator. Taking the ideal
gradient operator as the first derivative in s, the desired wave number can be shown to be

k conv= ikl (17)

Solving the semi-discretized convection equation with the finite difference gradient operator
and comparing this with the solution of the convection–diffusion equation yields the following
expression for an effective wave speed and effective viscosity of the convection operator:

u*=u
ki*
kl

(18)

�*=u
kr*
kl

2 (19)

This shows that the ratio of the imaginary part of the modified wave number to the wave
number describes the accuracy with which that particular wave component will be convected.
This ratio tends to zero at the Nyquist frequency. The real part of the modified wave number
characterizes the dissipation error of the operator. In order to obtain a meaningful expression
from the effective viscosity, it is expressed as a modified Reynolds number. The dissipation
error can be compared with the magnitude of the convection operator such that the error can
be quantified as the inverse of the effective Reynolds number as follows:

�*
�2u
�s2

u
�u
�s

�
�*

u
�s2

u
u
�s

=
�*

u�s
=

1
Re*

(20)

The lower the effective Reynolds number, the higher the error. An effective Reynolds number
of 2 corresponds to the diffusion associated with the first-order upwind scheme.

For the diffusion operator a second derivative is desired, leading to the following ideal wave
number:

kdiff= −kl
2 (21)

An analysis similar to that of the gradient operator leads to an effective viscosity and wave
speed as follows, where the effective viscosity is now the desired term and the effective velocity
the error term
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�*= −�
k �r
k l

2 (22)

u*= −�
k �i
kl

(23)

The effective viscosity should be equal to the actual viscosity and the effective wave speed
should be zero. To quantify the convective error terms, an effective Reynolds number is
obtained based on the effective wave speed and the actual viscous term

u*
�u
�s

�
�2u
�s2

�
u*

u
�s

�
u

�s2

=
u*�s

�
=

k �i�s
kl

=Re* (24)

In order to quantify the errors, the convective error can be compared with the true convective
term leading to a relation linking the effective Reynolds number to the cell Reynolds number

u*
u

= −
�k �i
ukl

= −
�

u�s
k �i�s

kl

= −
1

Rec

Re* (25)

The cell Reynolds number in actual flow solutions will vary from infinity for inviscid flow to
a value around unity in viscous layers. If a value of 2 is taken as representative of points in
areas of viscous flow, the effective Reynolds number can be interpreted as being twice the ratio
of the convective error term to the true convection term.

A three-dimensional Fourier expansion with different wave numbers in each of the Cartesian
directions could be used to analyse the behaviour of general operators. This, however,
eliminates the ease of interpretation afforded by the above scheme. A single wave in an
arbitrary direction can be represented as the sum of three waves in each Cartesian direction.
A three-dimensional Fourier analysis can therefore be performed by modifying the direction of
s, which is the equivalent of decomposing the analysis for each Cartesian direction and
combining the results for any possible direction. Zingg and Lomax [20] do this in two
dimensions, plotting the results in polar co-ordinates for each wave direction in the plane. For
three dimensions, polar plots are made for two-dimensional slices in space. Cuts in the x–y
plane and the x–z plane are used to partially represent the three-dimensional behaviour. For
the gradient operator, the ratio ki*/kl is plotted in the radial direction to represent the wave
speed, and e1/Re* for the effective viscosity. For the dissipation operator, the ratio kr*/kl

2

describes the viscous behaviour and eRe* is plotted for the dispersion errors. These variables
have been chosen so as to be always positive, with desired values of 1, so that inaccuracies can
be seen as departures from the unit circle.

The maximum wave number is based on the minimum edge length around a node, although
this may not be representative in cases were the mesh is very irregular or anisotropic. In these
instances, a case by case approach needs to be adopted when analysing the behaviour.
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4. ANALYSIS RESULTS

4.1. Gradient operator

First, a regular mesh point will be considered. An approximation to this is obtained in three
dimensions by extruding a regular two-dimensional mesh. The Fourier behaviour for the x–y
and x–z plane is shown in Figure 1 along with a cut of the mesh in the corresponding plane.
Trace 1 corresponds to the lowest wave number, close to a constant component, and trace 7
corresponds to the Nyquist frequency.

The decreasing radii of the plots of effective wave speed with increasing wave number show
the reduction in the response of the operator, reaching zero for the Nyquist frequency. The
response is very isotropic, with the six points around the node in that plane yielding
considerable improvements over a regular Cartesian grid. Anisotropies develop rapidly with

Figure 1. Stencil and Fourier plot for the convection operator on a regular mesh in the x–y and x–z
planes.
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Figure 2. Stencil and Fourier plot for the convection operator on a distorted mesh.

decreasing regularity, however, as shown by the plot for the x–z plane. While there is very
little dissipation error in the x–y plane, the error increases in the x–z plane to a value
corresponding to a minimum effective Reynolds number of 13. Figure 2 shows the results in
the x–y plane for a mesh point with 20 per cent randomization used to represent a realistic
unstructured mesh. The convective behaviour remains remarkably isotropic, but significant
levels of dissipation are introduced. The effective Reynolds numbers are as low as 3.5,
suggesting that the dissipation errors are half that of a first-order upwind operator.

4.2. Laplacian operator

The repeated action of a first-order accurate operator can be shown to be zeroth-order
accurate, meaning that the Laplacian operator will contain errors in the coefficients of the
second derivatives themselves. For the distorted mesh point considered above, Taylor series
analysis shows the coefficients of the second derivative terms to be 1.11, 0.98 and 1.05 for the
x-, y- and z-directions and the coefficients of the cross-derivative terms (xy, xz and yz) to be
0.24, 0.52 and 0.59. This is confirmed by the Fourier analysis showing errors in the effective
velocity of nearly 15 per cent, even at low wave numbers, and dispersion errors that can reach
20 per cent of the true convective term for an assumed cell Reynolds number of 2. Looking at
the actual coefficients of the operator themselves, 4/14 are found to be negative. Even for the
regular mesh point, positivity is not satisfied, explaining the lack of robustness displayed by
this operator when used for smoothing.

4.3. Second-order smoothing

Application of the Taylor series analysis to the second-order smoothing operator (8) shows
that the first derivative terms do not vanish on normal unstructured meshes. Dividing the
second difference by a length scale squared will lead to errors of order of accuracy of −1.
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Furthermore, slight anisotropies in the mesh lead to very different coefficients of the second
derivative terms in different directions. In practice, the situation is tempered by the magnitude
of the smoothing coefficients and by the Fourier behaviour of the operator.

This is shown in Figure 3 for the distorted mesh point considered above, where the results
are scaled to fit in the unit circle. This shows that even though the mesh cannot be considered
a stretched mesh, considerable anisotropy arises in the dissipative behaviour. Dispersion errors
correspond to 40 per cent of the true convection term for a cell Reynolds number of 2, so that
significant corruption of the flow solution is liable to occur.

In all cases considered, however, whether on the boundary or in highly stretched meshes, the
dissipation is positive. This is to be expected as the coefficients are all positive by definition,
and explains the operator’s popularity as a robust smoother.

4.4. Fourth-order smoothing

Taylor analysis of the fourth-order operator (9) on regular meshes shows that even for these
there are non-zero terms for all of the derivatives in the Taylor series and that the first and
second derivative terms are at least an order of magnitude greater than the desired fourth
derivative terms.

Figure 4 shows the Fourier behaviour of the operator for the distorted mesh point D in
Figure 5, scaled so as to fit on the unit circle. Ideally, the effective viscosity is zero for low
wave numbers and increases thereafter. In this case, there is a clear trend of increasing viscosity
with wave number, but it is not zero at the low wave numbers and decreases for the highest
wave numbers. This is due to the presence of second derivative terms. Despite the inaccuracy
of the operator, however, the smoothing is positive everywhere and relatively isotropic. As for
the dispersion errors, these are shown to be very large. To assess their importance, the
magnitude of the numerical viscosity coefficient was evaluated for specific nodes in real flow
solutions so as to compare the dispersive error with the true convection term. This showed that

Figure 3. Fourier plot for the edge sum Laplacian operator on a distorted mesh.
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Figure 4. Fourier plot for the fourth-order edge sum smoothing operator on distorted mesh point D.

Figure 5. Mesh stencil for irregular point D in the x–y plane.

the values of the effective Reynolds number corresponded to errors of 45 per cent for this
particular mesh point. Direct comparison of the convection term with the smoothing term for
a converged solution confirmed this result. As the errors are generated by the first derivative
terms, they occur for the low wave numbers, which are the ones most likely to be present in
the solution.

Figure 6 shows the Fourier behaviour at a point in a viscous layer. The mesh, taken from
an airfoil geometry, is an extruded rectangular mesh with an aspect ratio of 15. One would

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 903–923
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Figure 6. Stencil and Fourier plot for the fourth-order smoothing operator on point i in a viscous layer.

expect, and even desire, anisotropic smoothing for this mesh. In addition to this, however,
there is negative smoothing at low wave numbers. This was found on other cases containing
stretched meshes and is common for nodes on boundaries or at boundary edges. The
dispersion errors in this case are lower, due in part to the greater regularity of the mesh and
in part to the fact that the effective Reynolds number is based on the longest edge length
meeting at the node.

5. DESIGNING EDGE WEIGHTS

Severe limitations were revealed by the analysis described above for operators routinely used
in practice. Having expressed the operators as edge sums, it is possible to treat these as
adjustable parameters in an algebraic system with as many degrees of freedom as there are
edges. This will be described in the context of the fourth-order edge sum smoothing operator.

The performance of an operator is limited by its support stencil, defined as the set of all the
neighbouring nodes connected to a central node by an edge. Finite volume operators are
usually limited to their first neighbours as defined by all nodes sharing an actual cell; this set
contains of the order of 10–20 nodes. The fourth-order smoothing operator, however, makes
use of all of the second neighbours of a node, which can be up to 100 nodes depending on the
mesh. Since the term ‘edge’ no longer refers to the physical edge of a cell, edges can be created
linking any two points together, thereby extending the definition of the operator and adding
an extra degree of freedom to its behaviour. Given this flexibility, many strategies exist for
increasing a support stencil. In two dimensions, the support stencil for the fourth-order
smoothing operator was defined as the set of all second neighbours. In three dimensions,
however, the first neighbours were included and ‘tentacles’ were extended in the six Cartesian
directions as shown in Figure 7. This leads to many fewer points than the second neighbours
but allows the construction of an operator of similar order of accuracy.
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Figure 7. Adding tentacles to the stencil of a node.

Having determined the support stencil, the determination of the coefficients can be cast as
an optimization problem. Constraints on the minimum behaviour of the operator are imple-
mented as a system of linear equations and the desired behaviour is translated into a set of
functions to be minimized. Using least-squares optimization, the whole system of equations is
described by Equation (26) for a vector x of size n containing the coefficients Cn

Minimise F(x) subject to l�
� x

Cx
�

�u (26)

where

F(x)=
1
2

�b−Ax�2 (27)

l, u are the lower and upper limits for constraints; C is a nc×n constraints matrix; nc is the
number of constraints; b is the vector of observation; A is an nm×n least-squares matix; nm is
the number of minimizations.

This framework allows for three types of controls on the specification of the edge weights:
constraints on the magnitude of the coefficients (in l and m), constraints on the behaviour of
the coefficients (in C, l and u) and optimization of the behaviour of the coefficients (in A and
b).

Constraints on the magnitude of the coefficients are used to prevent degenerate cases as well
as to ensure certain numerical behaviour. In order to obtain a robust second-order smoother,
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the coefficients could be constrained to being positive. Since the fourth-order smoother
contains negative coefficients, even on a Cartesian mesh, no limits were imposed for the
optimized operator.

Constraints on the behaviour of the operator were applied to its Taylor series expansion.
This is the usual method of obtaining finite difference operators, specifying as high an order
of accuracy as the support stencil will allow. While this is satisfactory on Cartesian grids, on
irregular unstructured grids constraints on the lower derivatives can lead to very high
truncation errors of the higher derivative terms for certain cases. In order to ensure linear
transparency for the smoothing operator, all the terms in the Taylor series up to and including
the third derivative were set to zero. No constraints were imposed on the fourth derivative
terms.

The determination of the smoothing behaviour of the operator relies entirely on the
optimization of its Fourier behaviour. The optimum operator was chosen to be the exact
fourth-order smoothing operator on a Cartesian grid, described by coefficients (1, −4, 6,
−4, 1). This is consistent with the Taylor series constraints imposed on the operator as well as
with the support stencil constructed for each node. The modified wave number relations for
this operator are given by

ki=0

kr=�s4kl
4−0.1667�s6kl

6+0.0125�s8kl
8−5.622×10−4�s10kl

10+1.709×10−5�s12kl
12

−3.758×10−7�s14kl
14+HOT (28)

Departures from these relations were minimized over a set of discrete wave numbers and
directions representing three-dimensional space. Figure 8 depicts the wave directions chosen
where � represents the angle in the x–y plane and � is the elevation from this plane. These
directions were reflected in the x–y plane, thereby spanning one hemisphere, which is all that
is needed due to the presence of a plane of symmetry in the Fourier analysis. Three wave
numbers were chosen between 0.4 and 0.9 of the Nyquist frequency. For the uniform meshes,

Figure 8. Wave directions in three-dimensional space, angles in degrees.
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the Nyquist frequency was defined based on the average edge length, whereas for irregular or
stretched meshes, the definition was based on the root-mean-square (r.m.s.) of the mesh
spacing projected in each particular wave direction.

6. BOUNDARIES

Special treatment is required at and next to boundaries as the stencil there is not able to
support fourth-order smoothing. For simplicity, second-order smoothing operators were
obtained on boundaries and error terms were allowed in the first derivative in the wall normal
direction. These specifications are the same as the implicit ones for the second-order edge sum
smoothing operator. For nodes one cell away from boundaries, fourth-order smoothing was
enforced in directions tangent to the wall in the same manner as for nodes inside the flow
domain. Normal to the wall, the desired operator was a combination of second- and
fourth-order smoothing with zero error in the first gradient terms following the operators
described by Pulliam [21].

7. RESULTS

The Fourier behaviour of the new smoothing operator is presented for an equilateral mesh in
Figure 9. As before, trace 1 corresponds to the lowest wave number and trace 7 to the Nyquist
frequency. This shows that the operator is very isotropic and has a very low response at the
low wave numbers. Figure 10 shows the Fourier behaviour of the optimized operator for the
distorted mesh point D shown in Figure 5. The Fourier behaviour of the edge sum operator

Figure 9. Fourier plot for the two-dimensional optimized fourth-order smoothing operator on a regular
mesh point.
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Figure 10. Fourier plot for the two-dimensional optimized fourth-order smoothing operator on irregular
mesh point D.

was shown in Figure 4. From this it can be seen that the new operator contains no smoothing
at the low wave numbers and more isotropic smoothing at higher wave numbers. The
dispersion error is totally eliminated for the low wave numbers and increases steadily to
substantial values at the Nyquist frequency. The higher frequency waves are, however,
suppressed by the smoothing such that the dispersion errors will not affect the global accuracy
of the flow solution.

The smoothing was applied to the calculation of unsteady vortex shedding behind a cylinder.
Trials with the edge sum operator had led to an underestimation of the Strouhal number for
flows in the Reynolds number range of 100–250. This was thought to be due to the presence
of smoothing at the low wave numbers leading to a lower apparent Reynolds number as well
as to the dispersion errors. Table I provides a comparison of the drag and lift coefficients
with the results of Belov et al. [22]. These computational results were obtained using a

Table I. Strouhal number, drag coefficient and lift coefficient at Re=200 with
edge sum and Fourier optimized smoothing along with results from Belov et al.

[22].

CD CLStrouhalCalculation
number

Edge sum 0.177 0.88�0.029 �0.47
Fourier optimized �0.550.95�0.0380.192

�0.641.19�0.0420.193Belov et al. [22]
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Figure 11. Strouhal number versus Reynolds number for vortex shedding behind a cylinder (adapted
from Belov et al. [24]).

two-dimensional solver with an ‘O’ mesh of (256×256) nodes and showed very good
agreement with published experimental and numerical values. The improvement using the
optimized operators is clearly shown. The remaining discrepancy is thought to be due to
numerical approximations involved in the evaluation of viscous stresses at the boundary
during the calculation of the lift and drag coefficients.

Figure 11 shows the improvement in the calculation of the Strouhal number at three
different Reynolds numbers of the Fourier optimized smoothing compared with the edge
sum smoothing and with published experimental and computational results.

Inviscid flow over a hump served as a test case with truly three-dimensional smooth-
ing operators even though the flow is two-dimensional. The mesh was constructed by
extruding a two-dimensional mesh to create a domain three cells thick with the middle
plane shown in Figure 12. The nodes in the individual planes were randomized by 20 per
cent so as to simulate the kind of mesh irregularity that might be found in more realistic
problems.

The results in Figure 12 for the mesh with the mid-plane shown in Figure 13 show much
improved symmetry in the flow solutions. Table II shows that the global pressure loss
coefficient, defined as the non-dimensionalized mass flux integral of the stagnation pressure,
is a third of that which is obtained using either the edge sum smoothing operator or the
optimized operator of Holmes and Connell [18].
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Figure 12. Contours of x-velocity for inviscid hump with fourth-order edge sum (top) and optimized
(bottom) smoothing.

Figure 13. Randomized hump mesh.

Table II. Global pressure loss coefficient for three-dimensional inviscid flow
over a hump with three types of fourth-order smoothing operators.

Fourth-order smoothing Global pressure loss
coefficientoperator

0.0050Edge sum
Holmes and Connell [18] 0.0048
Fourier optimized 0.0016
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8. CONCLUSION

Making use of a generalized edge weight formulation for operators enabled unified accuracy
analyses of any type of operator based on both Taylor series analysis and Fourier analysis.
This analysis remains local in nature and was applied solely to the errors introduced by the
spatial operators. The local error terms could however be used as inputs to the method of
Baker [11] to obtain a global estimate of error that would also take into account the temporal
discretization errors.

The finite volume gradient operator based on a control volume comprising all cells meeting
at a node was shown to be nearly second-order accurate on a very regular mesh but was much
more likely to be of first-order accuracy on a realistic mesh with error terms on a par with an
upwind discretization. The direction of waves for which the dissipation error is positive is,
however, totally grid-dependent and can be opposite to the local flow direction. This leads to
substantial anti-smoothing at some nodes and explains the observation that unstructured flow
solvers develop instabilities faster than their structured counterparts and require higher levels
of artificial dissipation.

The Laplacian operator was found to be zeroth-order accurate rather than second-order
with errors in the second derivative term of up to 50 per cent of the desired value on irregular
meshes. In addition, positivity of coefficients is not satisfied on even the most regular grids,
leading to lack of robustness when the operator is used for smoothing and convergence
problems when it is used to solve the Poisson equation.

The edge sum approximation to the Laplacian is frequently used as a smoothing operator.
As such, its accuracy is only of secondary importance compared with the requirement that it
yield positive smoothing for all flows. Fourier analysis showed that this was the case for most
meshes for the second-order smoothing operator. The fourth-order smoothing operator was a
little more sensitive, yielding negative smoothing for very distorted meshes. In terms of
accuracy, however, both fared particularly poorly with substantial errors in the first and all
subsequent derivatives. This means that the second-order smoothing operator, when scaled by
a volume term, had an order of accuracy of −1. After including the coefficients of numerical
dissipation, this led to smoothing of zeroth-order accuracy.

A general framework was proposed for determining any type of operator on unstructured
meshes based on an edge sum formulation using least-squares optimization. This was applied
to the fourth-order smoothing operator. In two dimensions, results for unsteady vortex
shedding showed a great improvement in accuracy while in three dimensions the loss
coefficient for inviscid flow over a hump was reduced by a factor of three. The scheme can be
extended to different operators, such as the gradient and Laplacian operator. This would
enable a ‘mesh free’ flow solver consisting of a collection of points with connecting edges
chosen based on the desired accuracy of the flow solution.
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